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Objective

This technical note presents the results of a study that show the impact of
deformations on the resulting uplift distributions along a single joint located
directly below a concrete dam monolith during and after construction and for
subsequent initial fiiling of the reservoir.
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mpact the re Today, analytical tools such as the finite element method
(FEM) are available which can consider the manner in which loads and
resistance are developed as a function of the stiffness of the foundation rock
(or soil), the structure, and the structure-to-foundation interface.

Modeling Joint Flow: The Cubic Law

Flow within a rock joint can be characterized in a simplistic form as flow
between a pair of smooth parallel plates separated by a constant distance. This
distance is the joint opening or aperture, e. The flow rate per unit width is

given by
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here v is the unit weight of water, e is the conaucting aperture, anda j is e
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dynamic viscosity. The quantity of flow varies with the cube of the aperture e,
" 1 " b4 5
hence the name "the cubic law." By analogy with Darcy’s law, the equation
for a single joint may be rewritten as
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Q=K,, "[i] AREA, @
where Ki;r, is the permeability, i is the hydraulic gradient, and AREAg,, (e
times unit width) is the area of flow at any point along the single joint. The
above equation can be used to compute the steady-state quantity of flow and
distribution of uplift pressures (given known values for y and p), the heads at
each end of the joint, and the variation in aperture e with distance along the
joint. Conventional one-dimensional steady-state seepage computer program
packages that are commercially available can be used to perform the seepage
analysis.

Modeling Joint Deformation

Laboratory studies have shown that joint aperture is not constant but varies
with the stress applied normal to the joint. A mathematical relationship
between the deformation of joints and the applied loading (or unloading) has
been established based on laboratory tests on several different rocks and joint
types. The deformation of a joint with applied normal stress is commonly
referred to as joint closure/opening and is modeled for many types of joints
and rocks as a hyperbolic function (as described in Bandis, Lumsden, and
Barton (1983)). Figure 1 shows the hyperbolic relationship between joint
closure/opening with normal stress for initial loading and unloading of a single
joint in moderately weathered sandstone using the model parameters given in
Bandis, Lumsden, and Barton (1983). The size of the joint is described in
terms of the mechanical aperture, E. Mechanical aperture E is distinguished
from the conducting aperture e that is used in the cubic equation. The
mechanical agerture of the joint is assumed to have an initial value of £, equal
to 8.2 x 10™* ft (250 pm or 0.25 mm) at zero stress normal to the joint,
which is consistent with values typical of moderately weathered sandstone
(Bandis, Lumsden, and Barton 1983). A value of 8.2 X 107 ft (250 pm) for
E, is classified as a tight to partly open aperture according to the Barton
(1973) classification scale for apertures. The changes in the mechanical
aperture E with normal stresses shown in the upper portion of Figure 2 are
computed as E, minus the joint closure of Figure 1.

An interrelationship between e and E in Barton, Bandis, and Bakhtar
(1985) was used to construct the relationship between conducting joint
aperture e and normal stress shown in the lower portion of Figure 2 for a
moderately weathered sandstone joint of typical joint roughness. The initial
conducting joint aperture e at zero stress normal to the joint is equal to
2.75 x 107* ft (84 um or 0.084 mm). Note that the conducting aperture e
will always be less than the mechanical aperture E.

With the relationship between conducting aperture e and the normal stress
shown in Figure 2, the relationship between permeability along a single joint
and normal stress can be established by
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capable of modeling the incremental construction and incremental loading of
hydraulic structures. SOILSTRUCT calculates displacements and stresses due
to incremental construction and/or load application and can model nonlinear
stress-strain material behavior. Two types of finite elements are used to
represent the behavior of different materials comprising the monolith, its rock
foundation, and the interface between them: (a) a 2-D continuum element and
(b) an interface element.

Exampie Probiem: incrementai Construction and First
Flooding of a Gravity Dam Founded on Sandstone

The case of a concrete gravity dam constructed on weathered sandstone is
used to show the impact of joint closure and opening on uplift pressures.
Figure 4 shows the hypothetical dam to be 300 ft high and 235 ft wide. It was
assumed that jointing within the sandstone foundation was simplistic, a single
rock joint parallel to and immediately below the dam-to-foundation interface.
Changes in joint aperture in this problem are a result of the construction of

al. 1 masn A assl WY o4 & D-SRSY  BL PUR, S
uie gam ana suosequent 1iimg Or e reservoir.

Tha mndal Aame wrog Annotemintad and tha nAanl wrrog maicad fenme tha hoon ¢4

11i€ Mi0Ge Gam was Consirucieqa, ana i€ poo: was 1ais 170N Ui 0ase U
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and the sandstone foundation were assumed to be impervious. while all flow

1d the sandstone roundation were assumed € iImpervious, wille ail riow

below the dam was assumed to be confined to within the single sandstone
Jjoint. Twenty-nine interface elements were used to model the sandstone joint
in the finite element analysis, while 1,775 linear elastic, 2-D continuum

elements were used to model the concrete dam and the foundation sandstone.

The constitutive model used for all 29 sandstone joint interface elements is
shown in Figure 1. Figure 2 shows the resulting relationship between values
for effective normal stresses and values for both mechanical and conducting

w
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apertures for the sandstone joint. Figure 3 shows the resuiting permeability of
the rock joint based on the normai stresses. The variation of joint apertures
(both E and e) due to changes in normai stresses resuiting from the
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Figure 6 shows the resulting distribution of uplift pressures along the single
sandstone joint for pool elevations of 52, 170, and 300 ft. The results in this
figure show that for the low and intermediate pool elevations, the distribution
of uplift pressures along the sandstone joint is distinctly nonlinear from the
heel to the toe. In fact, each of these two computed distributions is less than
the linear distribution of uplift pressures which are typically assumed in
equilibrium analyses. The distribution of nonlinear uplift pressures reflects the
impact of changes of the distribution in conducting aperture with changes in
loading/unioading along the sandstone joint.
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distribution of uplift pressure is computed to be greater than that
corresponding to a linear distribution of uplift pressure as shown in this

Figure 7 shows the variation of uplift head computed at the heel, at the
toe, and at four points along the sandstone joint versus height of headwater.
The nonlinear variation in uplift head with height of headwater at the four
quarter-points along the joint reflects the changes in aperture with
loading/unloading along the joint. It is interesting to note that a nonlinear
variation in uplift with changes in pool elevations has been observed at several
instrumented dam sites, typically in foundations comprising "tight" joints. The
joint size used in this analysis would be characterized as a tight sandstone
joint.
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Conclusions
The principal results of this study are as follows:
a. Joint aperture and permeability vary with normal stress.

b. The distribution of uplift pressure along tight joints changes with the
appiied ioad and can be noniinear.
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Figure 2. Joint aperture versus normal stress
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Figure 5.

Effects of construction and water loading of monolith on joint
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